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Abstract. We present some new results which definitively explain the behavior of the classical, heuristic nonlinear
relaxation labeling algorithm of Rosenfeld, Hummel, and Zucker in terms of the Hummel-Zucker consistency theory
and dynamical systems theory. In particular, it is shown that, when a certain symmetry condition is met, the algorithm
possesses a Liapunov function which turns out to be (the negative of) a well-known consistency measure. This
follows almost immediately from a powerful result of Baum and Eagon developed in the context of Markov chain
theory. Moreover, it is seen that most of the essential dynamical properties of the algorithm are retained when the
symmetry restriction is relaxed. These properties are also shown to naturally generalize to higher-order relaxation
schemes. Some applications and implications of the presented results are finally outlined.
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1. Introduction

In 1976, Rosenfeld, Hummel and Zucker [1] intro-
duced a class of parallel iterative procedures which
have now become a standard technique in the pattern
recognition and machine vision domains. These algo-
rithms, generally known asrelaxation labeling pro-
cesses, attempt to exploit contextual information in
order to provide “consistent” solutions in classifica-
tion (or labeling) problems where noise and uncertainty
can affect the accuracy of classical non-contextual pat-
tern recognition algorithms. In their influential paper,
Rosenfeld and his co-workers developed a number of
relaxation schemes and, after pointing out their intrin-
sic limitations, eventually introduced a nonlinear algo-
rithm solely on the basis ofad-hocheuristic arguments.
Unfortunately, they were not able to relate their model
to a precise and satisfactory definition of consistency,
and this lack of rigorous justification has always been
indicated as one of the most serious drawbacks of the
model. Nevertheless, a variety of papers have later re-
ported on the practical usefulness of the algorithm (see,
e.g., [2] for a review and an extensive bibliography).

The recognized difficulties with the original heuris-
tic algorithm motivated several investigators to provide

formal definitions of consistency and develop alterna-
tive relaxation schemes. Essentially, two radically dis-
tinct approaches were pursued. On the one hand, some
have tried to set the labeling problem within a prob-
abilistic framework, exploiting the well-known tools
of Bayesian analysis. The most notable example of
this approach is that of Peleg [3], and the more recent
works of Kittler and Hancock [4], and Christmas et al.
[5] are in the same vein. As noted in [6], however,
even if Bayesian analysis provides much insight into
the understanding of relaxation labeling algorithms, the
approach is capable of accounting for at most one it-
eration of the process, and to understand its dynamical
properties one has necessarily to resort to some ap-
proximation. Recently, however, the behavior of these
“probabilistic” relaxation labeling procedures has be-
gun to be clarified thanks to the work of Stoddart et al.
[7] who have uncovered certain interesting dynami-
cal properties of the Hancock-Kittler and Christmas-
Kittler-Petrou probabilistic schemes.

A different standpoint consists of explicitly defining
some quantitative measure of consistency to be maxi-
mized, and then restating the labeling problem as one
of optimization. This appears to be advantageous in
that the progress at each iteration can be quantitatively
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assessed, and the convergence properties of the algo-
rithm are therefore easily derivable. Early attempts in
this direction were made by Ullman [8], and later by
Faugeras and Berthod [9]. Illingworth and Kittler [10]
provide a relatively recent account of these methods.
It is a remarkable fact that most of these developers
(of either side) have devoted great care to demonstrate
that the original nonlinear relaxation formulas can be
regarded as an approximation of their schemes.

Undoubtedly, however, a landmark contribution in
the theory of relaxation labeling processes was given
by Hummel and Zucker [6] who developed a general
theory of consistency that naturally extends the ideas
of classical (discrete) constraint satisfaction. Based
on this theory, they developed an alternative relaxation
procedure which turns out to possess desirable conver-
gence properties under unrestricted circumstances. In
addition, like many of their predecessors, they showed
that the standard nonlinear schemedoesapproximate
their algorithm, and this led them to explain its success
in terms of their theory. That of Hummel and Zucker is
now generally agreed to be the standard theory of con-
sistency in labeling problems. According to the distinc-
tion drawn by Kittler and Hancock [4], the Hummel-
Zucker consistency theory aims at providing anobject
centeredinterpretation, i.e., one in which our atten-
tion is confined to obtaining a label assignment to a
single object at a time. This contrasts with themes-
sage centeredapproach, where we seek instead a joint
labeling configuration that best explains the available
set of measurements for all objects. The latter stand-
point has recently motivated Hancock and Kittler [11]
to formulate the labeling problem as one ofmaximum a
posteriori probability(MAP) estimation problem, and
develop a powerful discrete relaxation algorithm.

Over the past years, a number of investigators have
attempted to formally establish a direct relationship
between the original relaxation scheme and some well-
founded theory of consistency. Lloyd [12], being ap-
parently unaware of the work of Hummel and Zucker,
showed that the nonlinear scheme can be regarded as a
suboptimal way of maximizing a certain consistency
function, which is in fact the one proposed in [6], under
some restrictive assumptions concerning the compat-
ibility relations. She showed this by simply rewrit-
ing the relaxation formulas so as to show that the
algorithm moves towards a gradient direction. The
“suboptimality” stems from the fact that the process
makes use of a fixed step size (equal to unity). As
is well known, gradient methods can ensure an increase

in the objective function only when infinitesimal steps
are taken, so that Lloyd’s analysis does not really pro-
vide much insight into the dynamical behavior of the
algorithm. An interesting paper about the properties of
nonlinear relaxation is one of Elfving and Eklundh [13]
who presented, in particular, a local convergence the-
orem which in our opinion deserves special attention
because of its potential use in certain novel applica-
tions of the algorithm (see the discussion in Section 8).
More recently, the problem of establishing a correspon-
dence between nonlinear relaxation and Hummel and
Zucker’s theory of consistency has been tackled by
Levy [14] but, unfortunately, his analysis is entirely
based on very strict conditions upon the compatibil-
ity relations which makes it uninteresting for practical
applications.

The principal contribution of this paper is to defini-
tively show how, despite its heuristic and simple-
minded character, the nonlinear relaxation algorithm
is in fact intimately related to the theory of consis-
tency developed by Hummel and Zucker. Specifi-
cally, based on a powerful result of use in the theory
of probabilistic functions of Markov processes, it is
shown that under a certain symmetry restriction Rosen-
feld et al.’s relaxation scheme monotonically increases
the well-known consistency function derived in [6].
This greatly extends earlier results of Lloyd [12] and
Levy [14]. In terms of dynamical systems theory it
can be stated therefore that the nonlinear relaxation
labeling algorithm possesses a Liapunov (or energy)
function which drives the process towards the near-
est consistent solution. In addition, it is demonstrated
that most of the essential dynamical properties of the
algorithm continue to hold even if the symmetry re-
quirement is relaxed, and the model is therefore proven
to accomplish something useful under unrestricted cir-
cumstances. A generalization to relaxation schemes
that incorporate high-order compatibility relations is
also discussed. Although these properties are tradition-
ally associated with relaxation labeling and the term
“relaxation” is indeed often used as a synonymous with
energy-minimization, we stress the fact that in the case
of the original heuristic formulas, such an association
has been more an “act of faith” than the actual result
of theoretical analysis.

This paper is organized as follows. In Section 2 we
introduce the nonlinear relaxation algorithm as defined
by Rosenfeld et al. [1]. Section 3 briefly reviews the the-
ory of consistency developed by Hummel and Zucker
[6], and presents some results that will be helpful in
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the subsequent part of the paper. In Section 4 we in-
troduce the so-called Baum-Eagon inequality, and in
Section 5 we apply this result to analyze the dynam-
ical behavior of relaxation in the symmetric case. In
Section 6, we relax the symmetry restriction and show
how the connection with the theory of consistency still
holds. Section 7 extends these results to the case of
high-order compatibility relations. Section 8 discusses
certain implications of the presented results, and then
concludes the paper.

2. Nonlinear Relaxation Labeling

The labeling problem involves a set of objectsB =
{b1, . . . , bn} and a set of possible labelsΛ = {1, . . . ,

m}.1 The purpose is to label each object ofB with
one label ofΛ. To accomplish this, two sources of
information are exploited. The first one relies onlo-
cal measurements which capture the salient features
of each object viewed in isolation; classical pattern
recognition techniques can be practically employed
to carry out this task. The second source of informa-
tion, instead, accounts for possible interactions among
nearby labels and, in fact, incorporates all the con-
textual knowledge about the problem at hand. This
is quantitatively expressed by means of a real-valued
four-dimensional matrix of compatibility coefficients
R = {ri j (λ, µ)}. The coefficientri j (λ, µ) measures the
strength of compatibility between the hypotheses “bi

has labelλ” and “bj has labelµ:” high values corre-
spond to compatibility and low values correspond to
incompatibility. In our discussion, the compatibilities
are assumed to be nonnegative, i.e.,ri j (λ, µ) ≥ 0, but
this seems not to be a severe limitation because, as will
be seen later, all the interesting concepts involved here
exhibit a certain “linear invariance” property. In this
paper, moreover, we will not concern ourselves with
the crucial problem of how to derive the compatibility
coefficients. Suffice to say that they can be either de-
termined on the basis of statistical grounds [1, 15, 16]
or, according to a more recent standpoint, adaptively
learned over a sample of training data [17–19].

The initial local measurements are assumed to pro-
vide, for each objectbi ∈ B, anm-dimensional vec-
tor p̄(0)

i = (p(0)
i (1), . . . , p(0)

i (m))T (where “T” denotes
the usual transpose operation), such thatp(0)

i (λ) ≥
0, i = 1 . . . n, λ ∈Λ, and

∑
λ p(0)

i (λ) = 1, i = 1 . . . n.
Each p(0)

i (λ) can be regarded as the initial, non-
contextual degree of confidence of the hypothesis “bi

is labeled with labelλ.” By simply concatenating

p̄(0)
1 , p̄(0)

2 , . . . , p̄(0)
n we obtain a weighted labeling

assignment for the objects ofB that will be denoted by
p̄(0) ∈ IRnm. A relaxation labeling process takes as input
the initial labeling assignment̄p(0) and iteratively up-
dates it taking into account the compatibility modelR.

At this point, we introduce the space of weighted
labeling assignments:

IK =
{

p̄ ∈ IRnm | pi (λ) ≥ 0, i = 1 . . . n, λ ∈ Λ

and
m∑

λ=1

pi (λ) = 1, i = 1 . . . n

}

which is a linear convex set of IRnm. Every vertex of IK
represents anunambiguouslabeling assignment, that is
one which assigns exactly one label to each object. The
set of these labelings will be denoted by IK∗:

IK ∗ = { p̄ ∈ IK | pi (λ) = 0 or 1, i = 1 . . . n, λ ∈Λ}.

Moreover, a labelingp̄ in the interior of IK (i.e.,
0 < pi (λ) < 1, for all i andλ) will be calledstrictly
ambiguous.

Now, let p̄ ∈ IK be any labeling assignment. To
develop a relaxation algorithm that updatesp̄ in accor-
dance with the compatibility model, we need to define,
for each objectbi ∈ B and each labelλ ∈ Λ, what
is called asupportfunction. This should quantify the
degree of agreement between the hypothesis thatbi

is labeled withλ, whose confidence is expressed by
pi (λ), and the context. This measure is commonly de-
fined as follows (see, e.g., [4, 20, 21] for alternative
definitions):

qi (λ; p̄) =
n∑

j =1

m∑
µ=1

ri j (λ, µ)pj (µ). (1)

Putting together theqi (λ; p̄)’s, as for thepi (λ)’s, we
obtain annm-dimensional support vector that will be
denoted bȳq( p̄).2 Support factors have an obvious in-
terpretation:qi (λ) is high when high-confidence neigh-
boring labels are “compatible” withλonbi ; conversely,
it is low when high-confidence neighboring labels are
“incompatible” withλ. Furthermore, notice that low-
confidence nearby labels have little or no influence on
the support measure, and this is what one should ex-
pect. The above discussion suggests a way to properly
adjust the labelinḡp: increasepi (λ) whenqi (λ) is high
and decrease it whenqi (λ) is low. This naturally leads
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to the following updating rule

pi (λ) := pi (λ)qi (λ)

/ m∑
µ=1

pi (µ)qi (µ) (2)

where the denominator serves simply to ensure that
the updated vectors are still in IK. Formulas (1) and
(2) define the original nonlinear relaxation operator of
Rosenfeld et al. [1] which was in fact originally moti-
vated by making recourse to the simple-minded, heuris-
tic arguments just developed.

The relaxation algorithm will be best viewed as a
continuous mappingT of the assignment space onto
itself. It starts out withp̄(0) and iteratively produces
a sequence of points̄p(0), p̄(1), p̄(2), . . . ∈ IK, where
p̄(t+1) = T ( p̄(t)), t ≥ 0. The process continues un-
til (at least in theory) a fixed, or equilibrium, point is
reached, which means thatT ( p̄(t)) = p̄(t), for somet .
It can be easily shown that a labelingp̄ is an equilib-
rium point forT if and only if the following relation
holds [22]:

qi (λ) = ci wheneverpi (λ) > 0, i = 1 . . . n, λ ∈Λ
(3)

for some nonnegative constantsc1, . . . , cn (note
that unambiguous labelings are therefore equilibrium
points forT ; the converse, of course, need not be true).

One of the first questions that must be raised about
the relaxation scheme discussed here, relates to the
well-definedness of the iterates defined in Eq. (2). We
now provide a practical criterion to test whether a given
initial labeling p̄(0) will give rise to a well-defined se-
quence{ p̄(0), p̄(1), p̄(2), . . .}. First, however, we need
an auxiliary concept. We say that a square matrix
A = (ai j ) iszero-symmetricif ai j = 0 impliesaji = 0,
for all i and j . Note that both symmetric and positive
matrices are trivially zero-symmetric. The next result
asserts that the sequence of points produced by the non-
linear relaxation mapping is well-defined for virtually
all cases of practical interest.

Proposition 2.1. Suppose that the compatibility ma-
trix R is zero-symmetric, and letp̄(0) ∈ IK be a labeling
for whichT ( p̄(0)) is defined. Then, so will beT ( p̄(t))

for all t ≥ 1.

Proof: Suppose to the contrary that, for somet1 ≥ 1,
T ( p̄(t1)) is undefined. This amounts to stating that there
exists somei such that

∑
µ p(t1)

i (µ)q(t1)
i (µ) = 0 and this

implies that for everyµ we have eitherp(t1)
i (µ) = 0

or q(t1)
i (µ) = 0. By the hypothesis, instead, we have∑

µ p(0)
i (µ)q(0)

i (µ) > 0 which means that there exists
at least oneα for which p(0)

i (α) > 0 andq(0)
i (α) > 0.

This second condition, in turn, implies that there ex-
ist j and β such thatp(0)

j (β) > 0 and ri j (α, β) > 0.

On the other hand, we have eitherp(t1)
i (α) = 0 or

q(t1)
i (α) = 0 and, sincep(0)

i (α) > 0, there exists at2 ≤ t1
such thatp(t2)

i (α) > 0 andq(t2)
i (α) = 0. Again, this last

condition implies p(t2)
j (β) = 0 (being ri j (α, β) > 0),

which means that, for somet3 < t2, q(t3)
j (β) = 0, be-

cause p(0)
j (β) > 0. Finally, since r j i (β, α) > 0 for

the zero-symmetry assumption, this would imply
that p(t3)

i (α) = 0 and consequentlyp(t2)
i (α) = 0, being

t2 > t3. This contradiction proves the proposition.2

We note that the conditions of the above proposition
are very likely to hold in practical applications. In fact,
shouldT ( p̄(0)) not be defined it would be so because
for some object, sayi , p(0)

i (λ) > 0 impliesq(0)
i (λ) = 0.

This would mean that the initial local measurements
are extremely inaccurate and, in particular, that they
strongly disagree with the constraint model. Fortu-
nately, in nearly all practical applications of interest
this is never the case. We add also that zero-symmetric
compatibility matrices are very commonly encountered
in practice (e.g., symmetric or positive matrices), and
even if this were not the case, it would be straight-
forward to make a non-zero-symmetric matrix become
zero-symmetric (it would suffice to replace all those
zero-components for which the zero-symmetry condi-
tion fails with a small positive constant). In view of
the above considerations, we will no longer be con-
cerned here with this problem, and it will be reason-
ably assumed that the relaxation iterates are always
well-defined.

3. Consistency and its Properties

In this section, we briefly review Hummel and Zucker’s
theory of constraint satisfaction [6] which commences
by providing a general definition of consistency. By
analogy with the unambiguous case, which is more eas-
ily understood, a weighted labeling assignmentp̄∈ IK
is said to beconsistentif

m∑
λ=1

pi (λ)qi (λ; p̄) ≥
m∑

λ=1

vi (λ)qi (λ; p̄), i = 1 . . . n

(4)
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for all v̄ ∈ IK. Furthermore, if strict inequalities hold in
(4), for all v̄ 6= p̄, thenp̄ is said to bestrictly consistent.
It can be seen that a necessary condition forp̄ to be
strictly consistent is that it is an unambiguous one, that
is p̄ ∈ IK ∗. Consistency is also usefully characterized
by the following condition:(v̄ − p̄) · q̄( p̄) ≤ 0 for all
v̄ ∈ IK, where “·” denotes the standard inner product
operator.

Given a labelingp̄ ∈ IK, the tangent set at̄p, de-
noted byTp̄, is defined as the set of possible directions
along which one can move an infinitesimal amount
away from p̄, while remaining in IK. It turns out that
the tangent set at̄p is given by:

Tp̄ =
{

d̄ ∈ IRnm

∣∣∣∣∣ m∑
λ=1

di (λ) = 0, i = 1 . . . n,

pi (λ) = 0⇒ di (λ) ≥ 0, i = 1 . . . n, λ ∈Λ

}
.

Owing to the convexity of IK, all the tangent vectors
at p̄ are of the formγ (v̄ − p̄), for someγ ≥ 0 and
v̄ ∈ IK. Accordingly, consistency is equivalent to the
conditiond̄ · q̄( p̄) ≤ 0, for all d̄ ∈ Tp̄.

A further useful characterization of consistent label-
ings is given in the next theorem, which also provides,
unlike the preceding ones, an operational criterion to
test the consistency of a given labeling3.

Theorem 3.1. A labeling p̄ ∈ IK is consistent if and
only if for all i = 1 . . . n the following conditions hold:

1) qi (λ) = ci , whenever pi (λ) > 0
2) qi (λ) ≤ ci , whenever pi (λ) = 0

for some nonnegative constants c1, . . . , cn.

Proof: Suppose that̄p is consistent. For alli =
1 . . . n, put ci = max{qi (λ; p̄) : λ ∈ Λ} and let
λi ∈ Λ be a label such thatqi (λi ) = ci . Then, trivially,
condition (2) is satisfied. Suppose now by contradic-
tion that pj (µ) > 0 andqj (µ) < cj for some j andµ,
and consider the following vectorv̄ ∈ IK:

vi (λ) =
 pi (λ), for i 6= j,

1, for i = j andλ = λ j ,

0, for i = j andλ 6= λ j .

We have

m∑
λ=1

v j (λ)qj (λ; p̄) = qj (λ j ; p̄) = cj

and, sincepj (µ) > 0 andqj (µ) < cj ,

m∑
λ=1

pj (λ)qj (λ; p̄) < cj =
m∑

λ=1

v j (λ)qj (λ; p̄).

This contradicts the hypothesis thatp̄ is consistent and
proves the first part of the theorem.

Now, suppose that conditions 1) and 2) are satisfied
and letv̄ ∈ IK. For anyi = 1 . . . n we have

m∑
λ=1

pi (λ)qi (λ; p̄) =
m∑

λ=1
pi (λ) > 0

pi (λ)ci = ci

and fromqi (λ; p̄) ≤ ci we obtain

m∑
λ=1

vi (λ)qi (λ; p̄) ≤
m∑

λ=1

vi (λ)ci = ci

=
m∑

λ=1

pi (λ)qi (λ; p̄)

which proves that̄p is consistent. 2

From the preceding theorem and characterization (3)
of fixed points, the next corollary follows immediately,
which establishes a first connection between nonlinear
relaxation labeling and Hummel and Zucker’s theory
of consistency.

Corollary 3.2. Let p̄ ∈ IK be consistent. Then̄p is
a fixed point for the nonlinear relaxation operatorT .
Moreover, if p̄ is strictly ambiguous the converse also
holds.

In [6], Hummel and Zucker introduced theaverage
local consistency, defined as

A( p̄) =
n∑

i =1

m∑
λ=1

pi (λ)qi (λ) (5)

and proved the following fundamental result.

Theorem 3.3 (Hummel-Zucker, [6]). Suppose that
the compatibility matrix R is symmetric(i.e.,
ri j (λ, µ) = r j i (µ, λ) for all i , j, λ, µ). Then any local
maximump̄ ∈ IK of A is consistent.

Basically, this follows immediately from the fact
that, whenR is symmetric, we have

∂ A( p̄)

∂pi (λ)
= 2

n∑
j =1

m∑
µ=1

ri j (λ, µ)pj (µ) = 2qi (λ), (6)
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where∂ A( p̄)/∂pi (λ)denotes the partial derivative ofA
with respect topi (λ), evaluated at̄p. In other words,
∇ A( p̄) = 2q̄, ∇ A( p̄) being the gradient ofA at p̄.
Note that, in general, the converse of Theorem 3.3 need
not be true since, to prove this, second-order deriva-
tive information would be required. However, the next
proposition asserts that, by demanding thatp̄be strictly
consistent, thisdoeshappen.

Proposition 3.4. Let ē ∈ IK ∗ be strictly consistent,
and suppose that R is symmetric. Thenē is a strict
local maximum of the average local consistency A.

Proof: Suppose to the contrary thatē is not a strict
local maximum ofA. Then, we can construct a se-
quence of points{v̄k}, v̄k ∈ IK, such thatv̄k → ē as
k → ∞, andA(ē) ≤ A(v̄k) for all k. Eachv̄k can be
written in the formv̄k = ē + δkz̄k, whereδk > 0 and
the z̄k’s are tangent vectors atē with Euclidean norm
‖z̄k‖ = 1, for allk. Clearly, we haveδk → 0 and since
the sequence{z̄k} is bounded, it must have some con-
vergent subsequence converging to somez̄. We may
assume, without loss of generality, that the sequence
{z̄k} is itself convergent tōz. Notice that, since each̄zk

is in Tē, z̄ must be inTē too. Now, applying Taylor’s
theorem, we can write

A(ē) − A(v̄k) = −∇ A(ē+ θkδkz̄k) · δkz̄k, all k

for someθk ∈ [0, 1]. Hence,∇ A(ē+θkδkz̄k) ·δkz̄k ≥ 0
which implies∇ A(ē+ θkδkz̄k) · z̄k ≥ 0 for all k. Now,
by lettingk → ∞, we have∇ A(ē) · z̄ ≥ 0 and, by the
symmetry ofR, ∇ A(ē) = 2q̄(ē). Thus we have found
a vectorz̄ ∈ Tē such that̄z · q̄(ē) ≥ 0. This contradicts
the hypothesis that̄e is strictly consistent and proves
the proposition. 2

To conclude this section, we show that the concept
of consistency is invariant under certain linear trans-
formations of the compatibility strengths. LetR be a
compatibility matrix and letC(R) denote the set of con-
sistent labelings with respect toR. From [6] we know
that C(R) 6= ∅. Let α andβ be arbitrary constants,
with α > 0, and construct the matrixR′ as follows:
r ′

i j (λ, µ) = αri j (λ, µ)+β. Then, it is straightforward
to see thatC(R) = C(R′). This follows immediately
from the fact thatq′

i (λ) ≡ ∑
j

∑
µ r ′

i j (λ, µ)pj (µ) =
αqi (λ) + nβ. Thus, if the compatibility matrixR con-
tains negative values, putr ′

i j (λ, µ) = ri j (λ, µ) − κ,
whereκ is the smallest negative value ofR: we have
that the transformed matrixR′ is nonnegative, and

C(R) = C(R′). This justifies therefore our restriction
to nonnegative compatibilities.

4. Baum-Eagon’s Inequality and Extensions

In the late 1960s, Baum and Eagon [24] introduced a
class of nonlinear transformations in probability do-
mains and proved a fundamental result which turns
out to have a surprising relation with the Hummel-
Zucker relaxation labeling theory. Their result gen-
eralizes an earlier one by Blakley [25] who discovered
similar properties for certain homogeneous quadratic
transformations. (Indeed, our analysis of nonlinear re-
laxation labeling could have been partly based upon
Blakley’s work but, because of its greater generality,
the Baum-Eagon result was preferred.) Let IK denote
the assignment space defined in Section 2 and, as usual,
let xi (λ) represent the(i, λ) component of the vector
x̄ ∈ IK. The next theorem introduces what is known as
the Baum-Eagon inequality.

Theorem 4.1 (Baum-Eagon [24]). Let P(x̄) be a
homogeneous polynomial in the variables{xi (λ)} with
nonnegative coefficients, and let x̄ be a point of the
domainIK . Define the mappingM as follows:

(M(x̄))i (λ) = xi (λ)
∂ P(x̄)

∂xi (λ)

/
m∑

µ=1

xi (µ)
∂ P(x̄)

∂xi (µ)
.

(7)

Then P(M(x̄)) > P(x̄), unlessM(x̄) = x̄ .

In Eq. (7), the notation(M(x̄))i (λ) stands for the
(i, λ) component of the vectorM(x̄). A continuous
mappingσ for which f (σ (x̄)) ≥ f (x̄) ( f being an
arbitrary real-valued function) is called agrowth trans-
formationfor σ . Indeed, in a subsequent paper, Baum
and Sell [26] proved much more. They showed that
Theorem 4.1 still holds in the case of arbitrary (non-
homogeneous) polynomials with nonnegative coeffi-
cients, and further extended the result by proving that
M increasesP homotopically, which means that

P(ηM(x̄) + (1 − η)x̄) ≥ P(x̄), 0 ≤ η ≤ 1 (8)

with equality if and only ifM(x̄) = x̄. In words, this
means that not only isP(x̄) smaller thanP(M(x̄)), but
P(x̄) is also less than the value ofP at any point ly-
ing on the segment joininḡx toM(x̄). However, they
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showed through an example thatP(ηM(x̄)+(1−η)x̄)

may fail to be monotone inη. In addition, in [26] Baum
and Sell provide an analysis of the asymptotic behav-
ior of growth transformations in the vicinity of local
extrema.

As noted in [26], the mappingM defined in The-
orem 4.1 makes use of first derivatives only and yet
is able to take finite steps while increasingP. This
contrasts sharply with classical gradient methods, for
which an increase in the objective function is guar-
anteed only when infinitesimal steps are taken, and
determining the optimal step size entails computing
higher-order derivatives. We add that performing gra-
dient ascent in IK requires some projection operator
to ensure that the constraints not be violated, and this
causes some problems for points lying on the boundary
[9, 27]. In (7), instead, a computationally simple row
normalization is required.

The Baum-Eagon inequality provides an effective
iterative means for maximizing polynomial functions
in probability domains, and in fact it has served as the
basis for various statistical estimation techniques de-
veloped within the theory of probabilistic functions of
Markov chains [28]. More recently, its usefulness in
the field of speech recognition has been proven [29].
Further properties of the transformationM are inves-
tigated in [30, 31] and, recently, Gopalakrishnan et al.
[32] introduced a new class of growth transformations
for rational functions which have interesting applica-
tions to certain statistical estimation problems of inter-
est in the speech recognition domain. Finally, in [7] a
continuous-time version of the Baum-Eagon theorem
is presented.

5. Nonlinear Relaxation Processes
are Growth Transformations

This section provides some results concerning the non-
linear relaxation operatorT which hold when the com-
patibility matrix R happens to be symmetric. This
appears not to be too strict a condition because most of
the compatibility coefficients proposed in the literature
are symmetric (e.g., [1, 3, 15]), and symmetric com-
patibilities can also be easily learned from training
data [17]. We begin by observing that the average
local consistency defined in Section 3 is a homoge-
neous quadratic polynomial in the variables{pi (λ)}
with nonnegative coefficients (theri j (λ, µ)’s). More-
over, recall that whenR is symmetric the gradient
of A at p̄ equals 2̄q( p̄). Thus, by simply applying

Theorem 4.1, the following fundamental result is eas-
ily proven.

Theorem 5.1. The nonlinear relaxation operatorT
is a growth transformation for the average local con-
sistency A, provided that compatibility coefficients are
nonnegative and symmetric.

More explicitly, the preceding theorem asserts that
the nonlinear relaxation scheme strictly increases the
average local consistency on each iteration, i.e.,

A( p̄(t+1)) > A( p̄(t)), t = 0, 1, . . . (9)

until a fixed point is reached. Even more interestingly,
from (8) we can assert thatA( p̄(t)) is also smaller than
the value ofA at each labeling assignment lying on the
segment joininḡp(t) to p̄(t+1), for each time stept ≥ 0.

Another way of looking at Theorem 5.1 is from the
standpoint of dynamical systems theory [33, 34]. The
nonlinear relaxation operatorT defines in fact a dis-
crete dynamical system and it is therefore of particular
interest to study how it behaves in the vicinity of its
equilibrium points. In the theory of dynamical systems
this is formalized by the concept of stability. An equi-
librium point x̄ is said to bestableif, whenever started
sufficiently close tox̄, the system will remain near to
x̄ for all future times. A stronger property, which is
even more desirable, is that the equilibrium pointx̄ be
asymptotically stable, meaning that̄x is stable and in
addition is alocal attractor, i.e., when initiated close
to x̄, the system tends towards̄x as time increases.
One of the most fundamental tools for establishing the
stability of a given equilibrium point is known as the
Liapunov’s direct method. It involves seeking a so-
calledLiapunovfunction, i.e., a continuous real-valued
function defined in state space which is nonincreasing
along a trajectory. Of particular interest arestrict Lia-
punov functions which are, instead, strictly decreasing
on nonconstant trajectories.

Now, from the preceding theorem we can assert that
−A is a strict Liapunov function for the nonlinear op-
eratorT . This, in conjunction with the fact that ev-
ery strictly consistent labeling is a local minimum of
−A (see Proposition 3.4), proves the following theo-
rem which is an obvious consequence of Liapunov’s
theorem of asymptotically stability [33, 34].

Theorem 5.2. Let ē ∈ IK∗ be strictly consistent and
suppose that the compatibility matrix R is nonnegative
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and symmetric. Then̄e is an asymptotically stable equi-
librium point for the nonlinear relaxation schemeT
and, consequently, is a local attractor.

As in Section 3, it is simple to show that the restric-
tion to nonnegative compatibilities does not actually
affect the generality of our discussion. In fact, sup-
pose that compatibility coefficients are allowed to be
negative. Consider the scaled compatibility matrixR′

as defined at the end of Section 3, and letA′ be the
corresponding average local consistency. It is easily
verified thatA′(v̄) > A′( p̄) if and only if A(v̄) > A( p̄),
for all v̄, p̄ ∈ IK. This means that if we have a growth
transformationM for A′, thenMwill be also a growth
transformation forA, andvice versa. Put another way,
the classes of growth transformations forA andA′ co-
incide. Therefore, when negative compatibilities are
given, we can use the scaled matrixR′ instead ofR;
doing so, the relaxation operatorT is also guaranteed
to monotonically increase the average local consistency
with respect to the original matrixR.

Before concluding this section, we observe that
many relaxation labeling formulas proposed in the lit-
erature have exactly the same form as that specified in
Eq. (2), but with different support functions. Some no-
table examples are presented in [3–5, 20]. The Baum-
Eagon inequality may therefore be useful to explain the
dynamical behavior of these algorithms, provided that
the support vector̄q is proven to be proportional to
the gradient of some polynomial consistency function.
We mention that by using a “truncated” version of the
Baum-Eagon theorem Stoddart et al. [7] have recently
shed light on the behavior of the Kittler-Hancock [4]
and the Christmas-Kittler-Petrou [5] probabilistic re-
laxation algorithms. Finally, we note that the Baum-
Eagon inequality may also be useful in defining novel
relaxation formulas once the labeling problem is cast as
one of maximizing a polynomial consistency function
over IK (e.g., [9]).

6. Nonlinear Relaxation
with Arbitrary Compatibilities

In the preceding section, we have restricted ourselves
to the case of symmetric compatibility coefficients and
have shown how, under this circumstance, the heuris-
tic nonlinear relaxation scheme is closely related to
the theory of consistency of Hummel and Zucker.
However, although symmetric compatibilities can eas-
ily be derived and asymmetric matrices can always be

symmetrized (i.e., by consideringR + RT ), it would
be desirable for a relaxation process to work also when
no restriction on the compatibility matrix is imposed
[6, 10]. This is especially true when the relaxation algo-
rithm is viewed as a plausible model of how biological
systems perform visual computation [35].

Despite the fact that in the asymmetric case no func-
tional to be maximized can be found, in this section it is
shown that the nonlinear relaxation algorithm still per-
forms useful computations in this case, and its connec-
tion with the theory of consistency continues to hold.
This appears to be interesting as the inability of non-
linear relaxation to handle unrestricted compatibilities
has been one of the strongest arguments against its use-
fulness [10]. We note, however, that certain results
concerning the behavior of the algorithm in the case of
arbitrary coefficients have long been established; par-
ticularly, we refer to a theorem by Elfving and Eklundh
[13], an extension of which will be presented later in
this section.

Let p̄ be a non-consistent labeling, and consider the
problem of updatingp̄ in agreement with the compa-
tibility model. As Hummel and Zucker themselves
pointed out [6], a reasonable strategy for doing this is to
take a step in the same direction asq̄; such a direction
clearly exists forp̄ is not consistent. Accordingly, the
updating problem can be formally stated as follows:

given p̄ ∈ IK, find d̄ ∈ Tp̄ such thatd̄ · q̄ ≥ 0. (10)

This kind of problems arises frequently in mathemati-
cal programming, where the role of the support vector
q̄ is indeed played by the gradient of some differen-
tiable objective function. In particular, problems like
(10) occur in the context of the so-calledmethods of
feasible directions, and are solved by appropriate di-
rection generator algorithms (see Zoutendijk [36] as
the standard reference). In the problem we are deal-
ing with, however, no objective function exists but the
motivations that lead to (10) are quite similar.

Hummel and Zucker’s approach to solving the up-
dating problem consists of seeking, among all vectors
satisfying (10), that which maximizes the inner prod-
uct withq̄ or, in other words, which makes the smallest
angle withq̄. They developed an updating rule, dis-
cussed in greater detail in [27], that when applied to
interior points performs a simple orthogonal projec-
tion of q̄ into the tangent planeTp̄. Unfortunately, in
the case of boundary points (i.e., having at least one
component equal to zero) the situation is much more
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complicated and the procedure becomes computation-
ally expensive. This led recently Parent and Zucker
[37] to develop an alternative, more efficient updating
rule which is also related to the previous one. Accord-
ing to Zoutendijk’s distinction of direction generator
methods ([36], Chap. 12), Hummel and Zucker’s ap-
proach to solving the updating problem can be classi-
fied as anoptimizationmethod, but this is by no means
the only possible strategy, and other approaches can
well be pursued.

The next theorem asserts that the nonlinear relax-
ation algorithmdoessolve problem (10), and thus can
be regarded as an alternative to the optimization ap-
proach developed in [6, 27]. It is based on a straight-
forward modification of a result of Levinson et al. [29]
(see also [12] for a related derivation).

Theorem 6.1. Let p̄ ∈ IK andq̄ be a labeling and the
associated support vector, respectively. LetT denote
the nonlinear relaxation mapping defined in(2). Then
(T ( p̄) − p̄) · q̄ > 0, unlessT ( p̄) = p̄.

Proof: Putki = ∑
µ pi (µ)qi (µ), for all i = 1 . . . n.

From the definition ofT we have

(T ( p̄))i (λ) ≥ pi (λ) if and only if qi (λ) ≥ ki ,

therefore(T ( p̄))i (λ) − pi (λ) andqi (λ) − ki have the
same sign, and this implies that

n∑
i =1

m∑
λ=1

[(T ( p̄))i (λ)−pi (λ)][qi (λ)−ki ] ≥ 0, (11)

from which we obtain(T ( p̄) − p̄) · q̄ ≥ 0. Sincep̄ is
not a fixed point forT , it must be true that(T ( p̄))i (λ)

> pi (λ), for somei andλ for which pi (λ) > 0, and
this holds if and only ifqi (λ) > ki . Thus, in sum (11)
there exists at least one summand greater than zero, and
this implies that(T ( p̄) − p̄) · q̄ > 0, which proves the
theorem. 2

From the preceding theorem, we can therefore as-
sert that the nonlinear relaxation schemeT belongs to
the class offeasibilitydirection generator methods [36,
p. 306] in that it does not concern itself with the prob-
lem of determining the “best” direction according to
some criterion. In contrast with the Hummel-Zucker
operator [6], it aims at solving problem (10) without
any quest for optimality, and this represents the most
important conceptual difference between the two al-
gorithms. Note also that, unlike the Hummel-Zucker

operator, the algorithm is able to determine the step
size automatically.

One important question that has not been (purposely)
raised until now, involves the relation between the stop-
ping points of relaxation and the consistent labelings.
As we have seen in Section 3, any consistent label-
ing is a stopping point for the nonlinear scheme, and
the converse holds in very restricted circumstances, in-
deed of little practical interest. In fact, it may well hap-
pen that some fixed point̄p will not be consistent, and
this follows essentially from the fact that the nonlinear
scheme (2) cannot leave a face or edge of IK. However,
if we demand that the initial labelinḡp(0) be strictly am-
biguous (see Section 2) then this comes true. Before
we show this, however, an auxiliary result is needed.

Lemma 6.2. Let{ p̄(t)} be the sequence of points pro-
duced by the nonlinear relaxation operatorT . Sup-
pose that, for some t1 ≥ 0, we have q(t1)i (λ) = 0. Then,
q(t)

i (λ) = 0 for all t ≥ t1.

Proof: If q(t1)
i (λ) = 0, then

∑
j,µ ri j (λ, µ)p(t1)

j (µ) =
0. Since all the quantities involved in the sum are non-
negative, we will have eitherri j (λ, µ)= 0 or p(t1)

j (µ) =
0, for all j = 1 . . . n andµ ∈ Λ. In the latter case,
by the definition ofT we will havep(t)

j (µ) = 0 for all

t ≥ t1; therefore, for allt ≥ t1, q(t)
i (λ) = 0. 2

Theorem 6.3. Let p̄(0) be a strictly ambiguous labe-
ling, and suppose that the sequence{ p̄(t)} produced by
the nonlinear relaxation processT converges to the
fixed pointp̄∗ ∈ IK . Thenp̄∗ is consistent.

Proof: From Theorem 3.1, we have simply to show
that

1) q∗
i (λ) = ci , if p∗

i (λ) > 0
2) q∗

i (λ) ≤ ci , if p∗
i (λ) = 0

for some nonnegative constantsc1, . . . , cn, where
q∗

i (λ) ≡ qi (λ; p̄∗). Since p̄∗ is a fixed point for the
relaxation operatorT , condition 1) is fulfilled. Sup-
pose now thatp∗

i (λ) = 0. Sincep̄(0) is strictly ambigu-
ous there exists at1 ≥ 1 such thatp(t1)

i (λ) = 0 and
p(t1−1)

i (λ) 6= 0, and this implies thatq(t1−1)
i (λ) = 0.

From Lemma 6.2 we haveq(t)
i (λ) = 0 ≤ ci , for all

t ≥ t1 − 1, and so will therefore beq∗
i (λ). This proves

the proposition. 2

Probably, the preceding result holds true under still
less restrictive hypotheses, but the condition thatp̄(0)
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not be on the boundary is not as strict as it would seem
since in many practical applications of interest the ini-
tial local measurementsdoprovide strictly ambiguous
labelings. Even if this were not the case, any “bound-
ary” initial labeling could be easily replaced with some
nearby interior point, without distorting the informa-
tion produced by the local measurements. It is interest-
ing to notice that other updating rules require that the
initial labeling assignments be strictly ambiguous [37].

To conclude our analysis in the general case of ar-
bitrary compatibilities we need, as in the previous
section, some local convergence result that asserts
something about the behavior of nonlinear relaxation
in the vicinity of consistent labelings. Interestingly
enough, such a result has been available since the early
1980s thanks to the work of Elfving and Eklundh [13],
but it seems to us that its importance as well as its
potential applications have not been fully recognized
(cf. Section 8). Here we present an extension of that
result.

Theorem 6.4. Letē ∈ IK∗ be a strictly consistent la-
beling. Then̄e is an asymptotically stable equilibrium
point for the nonlinear relaxation schemeT .

Proof: To prove the theorem we have to show that
ē is a stable equilibrium point, and also a local attrac-
tor for T . The latter condition was earlier proven in
[13, Theorem 10] by showing that the spectral radius
of the Jacobian ofT evaluated at any strictly consis-
tent labeling is less than 1. The fact thatē is a local
attractor follows therefore immediately from a well-
known result by Ostrowski [38, Theorem 22.1] (we
do not reproduce the proof here and refer to the origi-
nal paper for technical details). It remains thus to see
that ē is stable. Formally, this is expressed by the fol-
lowing condition: for anyε > 0 there exists aδ > 0
such that‖ p̄ − ē‖ < δ implies‖T t ( p̄) − ē‖ < ε for
all t ≥ 0, whereT t denotes thet th iterate ofT , i.e.,
T 0( p̄) = p̄ andT t ( p̄) = T (T t−1( p̄)) for t ≥ 1. First
of all, since ē is a local attractor forT , there must
exist aδ′ > 0 such that limt→∞ T t ( p̄) = ē whenever
‖ p̄ − ē‖ < δ′. Now, letε > 0 be an arbitrary positive
constant. There exists a nonnegative integert0 such
that for all t > t0 we have‖T t ( p̄) − ē‖ < ε whenever
‖ p̄ − ē‖ < δ′. Furthermore, sinceT is continuous, so
is T t for all t ≥ 0. This means that, for any choice
of t , there exists aδt > 0 such that‖ p̄ − ē‖ < δt

implies ‖T t ( p̄) − T t (ē)‖ = ‖T t ( p̄) − ē‖ < ε (re-
call that ē is a fixed point forT ). Therefore, by
settingδ = min{δ′, δ1, . . . , δt0} the condition for the

stability of ē follows immediately, thereby proving the
theorem. 2

This is the analog to the fundamental local conver-
gence result of Hummel and Zucker [6, Theorem 9.1].
Note that, unlike Theorem 5.2 no restriction on the
structure of the compatibility matrix is imposed here.
We conclude by mentioning that in [13] it is also shown
that the rate of convergence ofT is linear.

7. Higher-Order Relaxation Schemes

One of the working assumptions upon which our entire
analysis of nonlinear relaxation labeling has rested, is
that contextual relations be expressed in terms of pair-
wise compatibility coefficients, neglecting in fact pos-
sible higher-order interactions. The extent to which
this approximation is valid depends of course on the
complexity of the problem at hand, but a vast body
of computational experience clearly demonstrates that
second-order relations usually suffice to model satis-
factorily real-world constraints. In principle, higher-
order interactions could well be employed in practical
applications, but this would cause computational prob-
lems due to the combinatorial growth of calculations
and storage requirements involved, and sometimes the
improvement in performance does not compensate for
the increase in computational cost [39].

Despite the above considerations, however, we still
find it interesting to study higher-order relaxation pro-
cesses. This is partly because in certain applications the
use of high-order correlations has really shown to be ad-
vantageous (see, e.g., [40–42]). But, even more inter-
estingly, higher-order interactions have recently proven
to greatly enhance the performance of neural models in
such tasks as learning and generalization [43], and have
shown to significantly increase the storage capacity of
associative memories [44]. Additionally, such “multi-
plicative” interactions exhibit an intriguing biological
plausibility [45].

In this section, it is shown that all the properties of
“second-order” nonlinear relaxation discussed previ-
ously naturally generalize to the case of higher-order
compatibility relations. For clarity of discussion we
begin by considering third-order compatibilities. In
this case, the compatibility matrix becomes a three-
dimensional matrix (each dimension havingnm en-
tries), and compatibility coefficients express the degree
of agreement of triples of object-label configurations.
Specifically, the coefficientr i jk (λ, µ, ν) quantifies the
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compatibility among labelsλ, µ andν on objectsbi , bj

andbk, respectively. Accordingly, our linear support
function becomes

qi (λ) =
∑
j,µ

∑
k,ν

ri jk (λ, µ, ν)pj (µ)pk(ν) (12)

and the third-order nonlinear relaxation operatorT has
precisely the same form as in Eq. (2) but, now, with this
new meaning of theqi (λ)’s. Moreover, the definition
of consistency as well as all its properties hold true
in this case, with the appropriate definition ofq̄. In
particular, the average local consistencyA turns out to
be a cubic homogeneous polynomial.

For third-order compatibilities the symmetry restric-
tion is slightly more complicated than the correspond-
ing second-order counterpart. It states that

ri jk (λ, µ, ν) + rki j (ν, λ, µ) + r jki (µ, ν, λ)

= 3ri jk (λ, µ, ν) (13)

for all i, j, k = 1 . . . nandλ, µ, ν ∈ Λ. In this case, we
have that∇ A( p̄) = 3q̄ and, trivially, the Baum-Eagon
inequality can still be applied here. This implies that
third-order nonlinear relaxation processes continue to
be growth transformations for the average local con-
sistencyA or, put another way,−A is still a Liapunov
function forT . Therefore, all the results concerning
the behavior of the relaxation algorithm in the symmet-
ric case hold true in this case (Section 5). Likewise, it
is readily seen that the properties of Section 6 (arbitrary
compatibilities) continue to hold.

The above discussion extends to the more general
case ofK th-order compatibility relations in a straight-
forward fashion. In this case, the appropriate support
function is

qi (λ) =
∑
i2,λ2

∑
i3,λ3

· · ·
∑

i K ,λK

ri,i2,...,i K (λ, λ2, . . . , λK )

× pi2(λ2) · · · pi K (λK ) (14)

and the average local consistency is still a homoge-
neous polynomial (of degreeK ). The symmetry con-
dition complicates considerably here, and becomes∑

σ∈CK

riσ(1),iσ(2),...,iσ(K )

(
λσ(1), λσ(2), . . . , λσ(K )

)
= Kri1,i2,...,i K (λ1, λ2, . . . , λK ) (15)

for all i1, i2, . . . , i K = 1 . . . n andλ1, λ2, . . . , λK ∈
Λ, whereCK is the set of cyclic permutations onK

objects. In the symmetric case we have∇ A( p̄) = Kq̄.
All the preceding arguments apply immediately here
for the symmetric and the asymmetric case, and we
omit the details.

8. Summary and Discussion

Nonlinear relaxation labeling processes represent a
fundamental tool in the computer vision toolkit. They
were derived heuristically in the mid-1970s to solve
certain constraint satisfaction problems arising in
the interpretation of ambiguous line drawings, and
since then have been employing successfully in a va-
riety of practical tasks. At the same time, however,
their theory has never been fully understood, and their
heuristic nature has always been indicated as one of the
most serious drawbacks of the model.

In this paper, we have sought to provide a def-
inite answer to many long-standing questions about
the original nonlinear relaxation scheme. We have of-
fered a unified treatment of the algorithm and have
proven a number of properties which show that, in the
face of its completely heuristic derivation, it turns out
to be intimately related to a well-known mathemati-
cal theory of consistency developed by Hummel and
Zucker. In particular, based on a powerful result due
to Baum and Eagon, we have shown that in the case
of symmetric compatibilities the algorithm possesses
a Liapunov function which is precisely the measure
of (in)consistency proposed by Hummel and Zucker
in [6]. This amounts to stating that each relaxation la-
beling iteration actually increases the labeling’s con-
sistency, and the algorithm eventually approaches the
nearest consistent solution. We have then proceeded in
our analysis by relaxing the symmetry requirement and
have found that most of the essential dynamical proper-
ties of the algorithm hold true even in the general case
of unrestricted compatibilities. Finally, a generaliza-
tion of these results to higher-order relaxation schemes
has been discussed.

Apart from their theoretical value, the results pre-
sented in this paper have a number of applications and
implications that now we wish to discuss briefly. Per-
haps, the most immediate application that comes to
mind is in the field of optimization. In a classical pa-
per [46], Hopfield and Tank demonstrated how certain
networks of simple locally interacting processing units
are capable of solving difficult optimization problems.
To do so, they simply exploited the property of such
networks to have an associated energy function, and



    
P1: RPS/PCY P2: RPS/ASH P3: VTL/ASH QC:

Journal of Mathematical Imaging and Vision KL487-02-Pelillo August 21, 1997 15:3

320 Pelillo

proposed a method for mapping optimization problems
directly onto specific networks. The fact that the non-
linear relaxation algorithm possesses essentially the
same energy function as the Hopfield neural network
(Theorem 5.1) implies that the model can be utilized to
solve optimization problems in exactly the same way
as Hopfield and Tank did in their original work. We
note, however, that the two models operate in different
state spaces. In fact, while the Hopfield model works
on a “fuzzy” domain where every variable is simply
constrained to be in the range [0, 1], relaxation la-
beling operates on a “probabilistic” state space where
the variables are subject to an additional normaliza-
tion constraint. This is a remarkably positive fact that
leads to formulate simpler energy functions contain-
ing less easily-determined operational parameters [47].
As a matter of fact, experimental evidence has recently
demonstrated the power of Rosenfeld et al.’s relaxation
algorithm in solving hard optimization problems such
as the traveling salesman [48] or the maximum clique
problems [49], and the results show that the algorithm
clearly outperforms the Hopfield model, whose effec-
tiveness has recently been questioned [50]. Now, a
wide range of tasks in computer vision and pattern
recognition can be formulated in terms of minimizing
some cost function [51], and in fact many authors are
currently employing Hopfield-style networks to solve
them (see, e.g., [52] and references therein). From
the very encouraging results obtained so far, it is ex-
pected that nonlinear relaxation labeling has a good
chance of being capable of solving such vision prob-
lems within this energy-minimization framework. This
offers a new and systematic approach for designing re-
laxation labeling applications which, at present, are
instead typically guided by simple heuristic reasoning.

A further application of the results proven in this pa-
per arises in the context of associative memories. The
existence of stable attractors in state space is in fact
a highly desirable property that can be practically ex-
ploited to construct an associative memory device [53]:
memory patterns can be stored as attractive fixed points
of the system, so that when started in their vicinity
the memory will eventually “recall” the nearest one.
This is a property that is conveniently exploited in
such practical tasks as, for example, face processing
[54], and object recognition [55]. From Theorems 5.2
and 6.4 we know that strictly consistent labelings are
asymptotically stable equilibrium points, and hence
local attractors, for the nonlinear relaxation dynamical
system, and this naturally suggests the idea of using

the algorithm as an associative memory model. In this
kind of memory, patterns are first mapped onto unam-
biguous labeling assignments by means of a 1-of-m
encoding and then made strictly consistent by solv-
ing a system of linear equations (the storing phase).
A more detailed description of this kind of memory
along with experimental results which confirm its va-
lidity can be found in [19, 56]. A remarkable feature
of the approach is that it naturally allows us to develop
asymmetric multi-valued associative memories, which
are believed to be more closely related to biology and
turn out to be more useful in practical applications [57].

Our concluding considerations are rather specula-
tive, and relate to the plausibility of relaxation labeling
as a model of biological visual computation. Because
of their parallel and cooperative nature, in fact, it has
been clear since the beginning that intriguing similari-
ties exist between relaxation labeling processes and cer-
tain mechanisms in the early stages of biological visual
systems [1, 6]. This observation is indeed supported by
much physiological and anatomical evidence. To be-
gin, extensive collateral connections between pyrami-
dal cells have been found in the cerebral cortex [58] and,
as pointed out by Anderson [59], these strongly resem-
ble the kind of connections that are implemented in a re-
laxation labeling network. Interestingly, such collater-
als rarely extend over long distances, and this led Crick
and Asanuma to state that “in mathematical terms, for
one cortical area the connections seem to be ‘near-
diagonal,’ assuming that we have a two-dimensional
arrangement of cells and a four-dimensional connec-
tion matrix” [58, p. 366]. We observe that this is per-
fectly in accordance with the vast body of computa-
tional experience with relaxation labeling, where the
compatibility matrix turns out to have actually such
a “near-diagonal” form. This is so because, due to
computational requirements, in real-world applications
it is customary to neglect the influence of distant la-
bels. More recently, the biological significance of re-
laxation labeling has also been strongly advocated by
Zucker et al. [35] who explicitly hypothesized that
the first 2–3 iterations of the algorithm could be im-
plemented by the pyramidal neurons connecting the
striate and extrastriate cortices. Finally, until recently
one of the biggest obstacles to consider relaxation la-
beling as a realistic brain model, came from its (ap-
parent) lack of learning abilities, which is of course
one of the most fundamental aspects of the human
brain. Anderson and Hinton, classified in fact relax-
ation labeling algorithms as “systems of simple units
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with fixed interconnections” [60]. Indeed, this mis-
conception stemmed more from the utter lack of any
procedure that made relaxation learn, than from a real,
intrinsic inability of the algorithm to do this. Recently,
this obstacle has been removed and relaxation labeling
processes have instead exhibited interesting learning
capabilities [17–19].

The results presented in this paper may serve to
strengthen the biological plausibility hypothesis dis-
cussed above in at least two important ways. First,
though it is still an unanswered question as to what
style of computation is actually implemented in the
brain, increasing evidence supports an appealing alter-
native to the conventional von Neumann’s paradigm
which is clearly unsatisfactory for biological computa-
tion. The key idea behind this style of computation con-
sists of viewing information processing as the motion
of a dynamical system which evolves in a state space
dominated by few locally stable attractors [53, 61].
Hogg and Huberman [62] demonstrated that this com-
putational paradigm exhibits a number of interesting
properties that biological neural systems are known to
possess, such as adaptation to the environment, self-
repair, and conditional learning. They concluded that
“computing with attractors may be applicable to bi-
ological computation” [62, p. 6875]. Now, the fact
that, under symmetric connectivity restriction, nonlin-
ear relaxation labeling possesses a Liapunov function
(Theorem 5.1) that makes the algorithm evolve towards
stable attractors (i.e., strictly consistent labelings, see
Theorem 5.2), is a remarkable property which demon-
strates how the algorithm, in view of the above discus-
sion, exhibits computational properties that are iden-
tical to those the human brain is supposed to have.
On the other hand, this makes the algorithm intimately
related to other well-known neural network models
for which similar collective properties have been dis-
covered [53, 63, 64]. As to this last point, we men-
tion that some effort has recently been made in an at-
tempt to establish a formal correspondence between
the fields of relaxation labeling and artificial neural
networks [65, 66], and the results discussed in this pa-
per can also be intended as a contribution towards this
direction.

The second, and perhaps most remarkable feature
of nonlinear relaxation discussed in this paper, which
makes it even more attractive as a computational brain
model, is that all its fundamental dynamical proper-
ties are retained when the symmetry restriction is re-
laxed, and the algorithm continues to perform useful

computations in this case (see Section 6 and, particu-
larly, Theorem 6.4). This contrasts sharply with exist-
ing neural network models, whose convergence prop-
erties are instead known to hold only in the case of
symmetric connections [53, 63, 64] and, in the asym-
metric case, cyclic or chaotic behavior can occur. We
emphasize that the symmetry restriction is widely rec-
ognized to be biologically implausible, since empirical
evidence clearly suggests otherwise (e.g., [61]).

In conclusion, whatever the value of such specu-
lations, the theoretical analysis offered in this paper
definitively clarifies the dynamical behavior of the stan-
dard Rosenfeld et al.’s relaxation labeling algorithm,
thereby making it as well-founded and mathematically
justified as other notoriously more formal relaxation
schemes [3, 4, 6, 9]. It is hoped that our work may
serve to explain the success of the algorithm, and also
to guide practitioners in its future applications.

Notes

1. We remark that all the results presented in this paper hold true in
the more general case when objects are associated with different
label sets.

2. Henceforth, when it will be clear from context, the dependence
on p̄ will be understood.

3. See [23] for a different proof.
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